ApoE4 delays dendritic spine formation during neuron development and accelerates loss of mature spines in vitro
نویسندگان
چکیده
The ε4 allele of the gene that encodes apolipoprotein E (APOE4) is the greatest genetic risk factor for Alzheimer's disease (AD), while APOE2 reduces AD risk, compared to APOE3. The mechanism(s) underlying the effects of APOE on AD pathology remains unclear. In vivo, dendritic spine density is lower in APOE4-targeted replacement (APOE-TR) mice compared with APOE2- and APOE3-TR mice. To investigate whether this apoE4-induced decrease in spine density results from alterations in the formation or the loss of dendritic spines, the effects of neuron age and apoE isoform on the total number and subclasses of spines were examined in long-term wild-type neurons co-cultured with glia from APOE2-, APOE3- and APOE4-TR mice. Dendritic spine density and maturation were evaluated by immunocytochemistry via the presence of drebrin (an actin-binding protein) with GluN1 (NMDA receptor subunit) and GluA2 (AMPA receptor subunit) clusters. ApoE isoform effects were analyzed via a method previously established that identifies phases of spine formation (day-in-vitro, DIV10-18), maintenance (DIV18-21) and loss (DIV21-26). In the formation phase, apoE4 delayed total spine formation. During the maintenance phase, the density of GluN1+GluA2 spines did not change with apoE2, while the density of these spines decreased with apoE4 compared to apoE3, primarily due to the loss of GluA2 in spines. During the loss phase, total spine density was lower in neurons with apoE4 compared to apoE3. Thus, apoE4 delays total spine formation and may induce early synaptic dysfunction via impaired regulation of GluA2 in spines.
منابع مشابه
Cellular Source-Specific Effects of Apolipoprotein (Apo) E4 on Dendrite Arborization and Dendritic Spine Development
Apolipoprotein (apo) E4 is the leading genetic risk factor for Alzheimer's disease (AD), and it has a gene dose-dependent effect on the risk and age of onset of AD. Although apoE4 is primarily produced by astrocytes in the brain, neurons can also produce apoE4 under stress conditions. ApoE4 is known to inhibit neurite outgrowth and spine development in vitro and in vivo, but the potential influ...
متن کاملDevelopment of Long-Term Dendritic Spine Stability in Diverse Regions of Cerebral Cortex
Synapse formation and elimination occur throughout life, but the magnitude of such changes at distinct developmental stages remains unclear. Using transgenic mice overexpressing yellow fluorescent protein and transcranial two-photon microscopy, we repeatedly imaged dendritic spines on the apical dendrites of layer 5 pyramidal neurons. In young adolescent mice (1-month-old), 13%-20% of spines we...
متن کاملApoE4 decreases spine density and dendritic complexity in cortical neurons in vivo.
The three human alleles of apolipoprotein E (APOE) differentially influence outcome after CNS injury and affect one's risk of developing Alzheimer's disease (AD). It remains unclear how ApoE isoforms contribute to various AD-related pathological changes (e.g., amyloid plaques and synaptic and neuron loss). Here, we systematically examined whether apoE isoforms (E2, E3, E4) exhibit differential ...
متن کاملSynaptogenesis on mature hippocampal dendrites occurs via filopodia and immature spines during blocked synaptic transmission.
During development, dendritic spines emerge as stubby protrusions from single synapses on dendritic shafts or from retracting filopodia, many of which have more than one synapse. These structures are rarely encountered in the mature brain. Recently, confocal and two-photon microscopy have revealed a proliferation of new filopodia-like protrusions in mature hippocampal slices, especially when sy...
متن کاملMultiple EphB receptor tyrosine kinases shape dendritic spines in the hippocampus
Here, using a genetic approach, we dissect the roles of EphB receptor tyrosine kinases in dendritic spine development. Analysis of EphB1, EphB2, and EphB3 double and triple mutant mice lacking these receptors in different combinations indicates that all three, although to varying degrees, are involved in dendritic spine morphogenesis and synapse formation in the hippocampus. Hippocampal neurons...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2014